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Designing an efficient sampling scheme for a rare and clustered population is a chal-
lenging area of research. Adaptive cluster sampling, which has been shown to be viable for
such a population, is based on sampling a neighborhood of units around a unit that meets
a specified condition. However, the edge units produced by sampling neighborhoods have
proven to limit the efficiency and applicability of adaptive cluster sampling. We propose
a sampling design that is adaptive in the sense that the final sample depends on observed
values, but it avoids the use of neighborhoods and the sampling of edge units. Unbiased
estimators of population total and its variance are derived using Murthy’s estimator. The
modified two-stage sampling design is easy to implement and can be applied to a wider
range of populations than adaptive cluster sampling. We evaluate the proposed sampling
design by simulating sampling of two real biological populations and an artificial population
for which the variable of interest took the value either 0 or 1 (e.g., indicating presence and
absence of a rare event). We show that the proposed sampling design is more efficient than
conventional sampling in nearly all cases. The approach used to derive estimators (Murthy’s
estimator) opens the door for unbiased estimators to be found for similar sequential sampling
designs.

Key Words: Clustered population; Freshwater mussels; Murthy’s estimator; Neyman al-
location; Rare events; Waterfowl.

1. INTRODUCTION

Designing an efficient sampling scheme for a rare and clustered population is a chal-
lenging area of research. Recently, adaptive sampling designs have been identified as leading
candidates for this application (Thompson and Seber 1996; Christman 2000; Smith, Brown,
and Lo 2004). A sampling design is “adaptive” if the procedure for selecting the sample
depends on the values of the variable of interest observed in the sample. One of the simplest
and perhaps oldest of the adaptive sampling designs is inverse sampling. Haldane (1945)
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used inverse sampling to estimate the population proportion of a rare event in a finite pop-
ulation context. In this design, sampling continues until a predetermined number of rare
events are found.

Adaptive cluster sampling, introduced by Thompson (1990), is a recent example of an
adaptive sampling design. This sampling design has drawn the attention of practitioners
and researchers during the last decade because it has been shown to be useful for estimat-
ing parameters of highly clustered and rare populations (Smith, Brown, and Lo 2004). In
general, if a rare event is found when applying adaptive cluster sampling, then sampling
continues in the vicinity of that location with the hope of observing more rare events. The
essential ingredients of the adaptive cluster sampling method consist of an initial selection
of units, a condition C that determines when one adaptively samples neighboring units, and
a description of the neighborhood for each unit.

Defining the neighborhood, which is a crucial task, can be problematic for several rea-
sons. First, an inappropriate definition of the neighborhood will lead to selecting excessive
numbers of “edge units.” Edge units do not meet the condition C, are in the neighborhood
of unit(s) that do meet the condition, and contribute little or nothing to the precision of esti-
mators (Salehi 1999). Sampling freshwater mussels, which we discuss in the next section,
provides a practical example of edge units’ negative effects (Smith, Villella, and Lemarie
2003).

Second, navigating among all units in a neighborhood can be logistically difficult. For
example, in fisheries surveys, conducted over large bodies of water, it is not practical to
follow the adaptive cluster sampling protocol by sailing to all neighboring units until the
condition is no longer met. Lo, Griffith, and Hunter (1997) and Hanselman et al. (2003)
applied adaptive cluster sampling to Pacific hake larvae (Merluccius productus) and Gulf
of Alaska rockfish (Sebastes sp.), respectively. However, in both studies the investigators
restricted adaptive sampling by imposing an arbitrary stopping rule, which resulted in biased
estimates. Aerial surveys of wildlife can suffer from similar navigational limitations.

Third, defining a neighborhood can be impossible in some cases. Consider the problem
of estimating the number of teenagers who participate in a rare activity (e.g., using illegal
drugs or cleaning their bedrooms). Teenagers’ tendency to follow the behavior of other
teenagers living in the same area could be used in adaptive cluster sampling by defining the
neighborhood as all of a teenager’s friends who live in the same area. However, adaptive
cluster sampling requires neighborhoods to be “symmetric” and the teenagers’ friendships
would have to be mutual. That is, if teenager A considers teenager B to be a friend, would
B consider A to be a friend? If the answer could be “no,” then adaptive cluster sampling
would not work in this case.

This article introduces an adaptive sampling design that does not require a neighborhood
and does not generate “edge units” in the sample, but does exploit clustering in the population
to find rare events. Importantly, through the application of Murthy’s estimator (Murthy 1957)
the design is unbiased. Our approach follows the two-stage sampling approach in which
one selects primary sample units (PSUs) by some conventional sampling design and then
selects a subsample of secondary sample units within each of the selected primary units.
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Throughout this article, the term “unit” will mean secondary unit. Whenever we come across
a unit satisfying a condition, say C, a predetermined number of extra units are selected at
random within its primary unit with the hope of finding more units satisfying condition C.
We call this method the two-stage sequential sampling design.

When sampling rare populations, Kalton and Anderson (1986) recommended stratified
sampling (a special case of two-stage sampling) with unequal allocation of the sample size
in which (1) strata with high concentrations of the rare events are oversampled and (2) a
small proportion of strata contain a substantial proportion of the rare events. Thus, based on
their recommendations and assuming the rare events are clustered, we endeavor to confine
the rare clusters in some PSUs such that those PSUs contain a substantial proportion of the
rare events.

The proposed sampling design differs from other two-stage or stratified designs that
incorporate adaptive or sequential sampling (Francis 1984; Jolly and Hampton 1990; Salehi
and Seber 1997; Christman 2003). An important difference is that the other designs, with the
exception of Salehi and Seber (1997), are presented with biased estimators. In addition, we
suggest that our design offers advantages in ease and flexibility of implementation. Francis
(1984) introduced an adaptive strategy for stratified sampling, which was developed for a
fishery trawl survey. In Francis’s design, strata are sampled in the first phase and then extra
effort is allocated in the second phase proportional to a variance reduction criterion. Sam-
pling in the second phase, which should have a low sample size, must wait until completion
of the first phase, which must have a large enough sample to yield good estimates of strata-
specific variance. Jolly and Hampton (1990) introduced and used a two-phase procedure
similar to Francis (1984). In our proposed design, sequential sampling within a PSU can be
completed immediately after the initial sample is taken and before leaving the PSU, which
in our opinion would ease the implementation over the preceding designs. The two-stage
adaptive cluster sampling design introduced by Salehi and Seber (1997) is quite different
from the proposed two-stage sequential sampling design in terms of methodology and the-
ory. Christman (2003) introduced adaptive two-stage one-per-stratum sampling and applied
it to three small and artificial populations for which adaptive sampling was known to be
appropriate. Our proposed design is efficient for a wide range of populations, and little or no
efficiency is lost when applying it to populations that lack clustering. Thus, the two-stage
sequential sampling design presented in this article is easier to implement and more flexible
than those introduced before, and the approach used to derive estimators (Murthy’s esti-
mator) opens the door for unbiased estimators to be found for similar sequential sampling
designs.

To investigate the properties of the estimator, we simulated sampling of two real bio-
logical populations and one artificial population. Section 2  introduces the populations: a
blue-winged teal population that is highly clustered, three freshwater mussel populations
that are less clustered, and an artificial population chosen to mimic presence/absence data.
Section 3 develops the methodology and presents notation and estimators along with ex-
ample calculations. Section 4 describes the sampling simulations and presents the results.
Section 5 discusses the results and makes suggestions for application of the proposed design.
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Figure 1. Numbers of blue-winged teal as given by Smith et al. (1995) and a demonstration of two-stage sequential
sampling. Units are partitioned into eight primary sampling units (PSUs), which are labeled along the left and
right margins. Shaded units show results from two-stage sequential sampling. A simple random sample of four
primary sampling units (PSUs) is selected from eight numbered PSUs. Two units are initially selected without
replacement from each selected PSU (units shaded light gray). Because the criteria is met, four additional units
are selected without replacement from PSU’s one and five (units shaded dark gray).

2. EXAMPLE POPULATIONS

Smith, Conroy, and Brakhage (1995) used a population of blue-winged teal and popula-
tions of two other waterfowl species to evaluate adaptive cluster sampling. The populations
came from comprehensive counts, which were made from helicopters during December
13–15, 1992, in central Florida. The blue-winged teal population is extremely clustered,
with a total of N = 200 units (Figure 1). Adaptive cluster sampling was found by a simu-
lation study to be efficient for the population, in the sense of having smaller variance of the
estimator than that of simple random sampling (Smith et al. 1995).

Density of freshwater mussels is difficult to estimate well because of their tendency
to be rare and clustered at some spatial scales (Strayer and Smith 2003). Smith et al.
(2003) applied adaptive cluster sampling to low-density populations of freshwater mussels
and found that adaptive cluster sampling increased observations of individuals and rare
species. However, they also found that sampling of edge units greatly increased effort with
little or no gain in efficiency in density estimates. Thus, an adaptive sampling procedure
that reduces or eliminates sampling of edge units would be of great interest for freshwater
mussel population assessments. An exhaustive search for freshwater mussels at the substrate
surface was conducted in a section of the Cacapon River, West Virginia, during June 1994.
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Individual mussels were counted and mapped to the nearest .25 m2 (Figure 2). The three
species, Elliptio complanata, E. fisheriana, and Lampsilis cariosa, exhibited different spatial
distributions. The E. complanata population was not rare, but it was relatively clustered. The
E. fisheriana population was relatively rare and clustered. The L. cariosa population was
rare, but not clustered. Application of two-stage sequential sampling to these populations
will demonstrate design performance over a range of spatial distributions.

The artificial population is one for which we assume that defining a neighborhood
is impossible. In the artificial population, the variable of interest is an indicator function

Figure 2. Populations of three species of freshwater mussels in a 40m section of the Cacapon River, West Virginia. An
exhaustive search for mussels at the substrate surface was conducted during June 1994, and counts of individuals
were recorded at a resolution of .25 m2. Panel A shows the distribution of Elliptio complanata. Panel B shows the
distribution of E. fisheriana. Panel C shows the distribution of Lampsilis cariosa. River flow is from right to left.
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(i.e., the variable takes either 0 or 1), which could represent observations of the presence

and absence of a rare species, for example. Thompson and Seber (1996, p. 120 and 158)

discussed that when the variable of interest is an indicator function adaptive cluster sampling

is not an efficient sampling design. We will show that two-stage sequential sampling would

be appropriate for such a population.

3. NOTATION AND ESTIMATOR

Suppose that we have a total population of N units, which are partitioned into M

primary units of size Ni units (i = 1, 2, . . . , M). Based on our information about the rare

clusters, their size and natural restrictions we choose sizes for the PSUs. We should note that

precise information about their size is often not available. Let the unit (i, j) denote the jth

unit in the ith primary unit with an associated measurement or count yij . Let τi =
∑Ni

j=1 yij

be the sum of the y values in the ith primary unit, and let τ =
∑M

i=1 τi be the total for the

whole population.

In the first stage of the sampling, we choose a sample of m from the M primary

units without replacement by some design with inclusion probability πi for primary unit

i and the joint inclusion probability πii′ for primary units i and i′. At the second stage,

we take an initial simple random sample of ni1 units without replacement from primary

unit i (i = 1, 2, . . . , m) so that n1 =
∑m

i=1 ni1 is the total initial sample size. Let C be

the condition that if satisfied for at least one unit in primary unit i causes a predetermined

number of additional units, say ni2, to be selected at random from primary unit i. As a

result, n2 =
∑m

i=1 ni2 is the number of adaptively added units and is a random variable.

Let li be the number of units satisfying condition C in the final sample from primary unit

i. When m = M , we have a stratified sequential sampling scheme.

Here we use Murthy’s estimator (1957) to devise unbiased estimators for this design.

Murthy’s estimator is originally a Rao-Blackwell improvement of Raj’s estimator (Raj

1956). Salehi and Seber (2001) showed that Murthy’s estimator is also a Rao-Blackwell

improvement of a trivial unbiased estimator, which can be used for sequential sampling

designs. Let Iij be an indicator function, which takes the values 1 (with probability pij)

when unit j is chosen as the very first selected unit in PSU i and 0 otherwise.

t̂i =
Ni∑
j=1

yij

pij
Iij

 is a trivial unbiased estimator of τi provided that pij > 0 for j = 1, . . . , Ni. Let si be

the final sample set in the primary unit i. Using Rao-Blackwell theorem, we have Murthy’s

estimator

τ̂i = E[t̂i|si] =
∑
j∈si

P (si|j)
P (si)

yij , (3.1)
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where P (si) is the probability of obtaining the sample si in primary unit i and P (si|j)
is the conditional probability of getting the sample si given the jth unit was selected in

the first draw in primary unit i. Two important measures of the quality of an estimator are

the bias and the mean square error (Särndal, Swensson, and Wretman 1992, pp. 40). The

latter becomes the variance when the bias is zero. Hájek (1971) resolutely expressed that

greatly biased estimators are poor no matter what other properties they have. According to

the Rao-Blackwell theorem estimator τ̂i is unbiased for τi if pij > 0 for j = 1, . . . , Ni.

The variance of τ̂i is given by

var[τ̂i] =
Ni∑
j=1

Ni∑
j<j′

1 −
∑

si�j,j′

P (si|j)P (si|j′)
P (si)

(yij

pij
− yij′

pij′

)2

pijpi′j .

Because we have pij = ni1/Ni for all j = 1, 2, . . . , Ni,

var[τ̂i] =
Ni∑
j=1

Ni∑
j<j′

1 −
∑

si�j,j′

P (si|j)P (si|j′)
P (si)

 (yij − yij′)2, (3.2)

and its unbiased estimator is

v̂ar[τ̂i] =
∑
j∈si

∑
j<j′

(
P (si|j, j′)

P (si)
− P (si|j)P (si|j′)

P (si)2

)
(yij − yij′)2, (3.3)

where P (si|j, j′) is the probability of the sample si given that the units j and j′ were

selected (in either order) in the first two draws in primary unit i. A relatively simple proof

of unbiasness of (3.3) was given by Salehi and Seber (2001). It is assumed that P (si|j, j′) is

well-defined. For two-stage sequential sampling Murthy’s estimator provides an unbiased

estimator for τ̂i since pij > 0 for j = 1, . . . , Ni.

For evaluating (3.1) we need to compute P (si|j)/P (si) which is given by

P (si|j)
P (si)

=



Ni

ni1
ni2 = 0

Ni

ni1+ni2
ni2 > 0 and li > ni2

Ni(ni1+ni2−1)!
(ni1+ni2)!−ni2!(ni1+ni2−li)!/(ni2−li)! ni2 > 0 and li ≤ ni2

and j satisfies C

Ni{(ni1+ni2−1)!−ni2!(ni1+ni2−1−li)!/(ni2−li)!}
(ni1+ni2)!−ni2!(ni1+ni2−li)!/(ni2−li)! ni2 > 0 and li ≤ ni2

and j not satisfy C.
(3.4)

On substituting (3.4) into (3.1) we can compute τ̂i. Note that when ni2 = 0 or ni2 >

0 and li > ni2, τ̂i is Ni times the sample mean, which is the population total estimator for

simple random sampling design.
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For evaluating (3.3) we need to compute P (si|j, j′)/P (si) which is given by

P (si|j, j′)
P (si)

=



Ni(Ni−1)
ni1(ni1−1) ni2 = 0

Ni(Ni−1)
(ni1+ni2)(ni1+ni2−1) ni2 > 0 and li > ni2

Ni(Ni−1)(ni1+ni2−2)!

(ni1+ni2)!−ni2!
(ni1+ni2−li)!

(ni2−li)!

ni2 > 0 and li ≤ ni2 and

either j or j′ satisfies C

Ni(Ni−1){(ni1+ni2−2)!−ni2!
(ni1+ni2−li−2)!

(ni2−li)! }
(ni1+ni2)!−ni2!

(ni1+ni2−li)!
(ni2−li)!

ni2 > 0 and li ≤ ni2 and

neither j nor j′ satisfy C.
(3.5)

On substituting (3.4) and (3.5) into (3.3) we can compute v̂ar[τ̂i]. Note that when ni2 = 0

or ni2 > 0 and li > ni2, v̂ar[τ̂i] is an unbiased variance estimator of the population total

for simple random sampling design. Proofs for (3.4) and (3.5) are given in the Appendix.

Because for two-stage sequential sampling the same sampling design is used to subsam-

ple each primary unit and subsampling is carried out independently, we can apply the theory

of Horvitz-Thompson estimator (1952) for two-stage sampling to estimate population total.

Thus, we have

τ̂ =
m∑

i=1

τ̂i

πi
, (3.6)

which is unbiased for τi. Its variance is

var[τ̂ ] =
M∑
i=1

M∑
i′=1

(
πii′ − πiπi′

πiπi′

)
τiτi′ +

M∑
i=1

var[τ̂i]
πi

, (3.7)

where πii is interpreted as πi. An unbiased estimator of the above is

v̂ar[τ̂ ] =
m∑

i=1

m∑
i′=1

(
πii′ − πiπi′

πiπi′

)
τ̂iτ̂i′

πii′
+

m∑
i=1

v̂ar[τ̂i]
πi

, (3.8)

where τ̂i, var[τ̂i] and v̂ar[τ̂i] are, respectively, substituted by (3.1), (3.2), and (3.3). Be-

cause τ̂i’s are unbiased for τi’s using the unbiasedness property of the Horvitz-Thompson

estimator, the v̂ar[τ̂ ] are also unbiased (Särndal, Swensson, and Wretman 1992, p. 137).

4. SIMULATIONS

We simulated two-stage sequential sampling on two real populations and one artificial

population. The real populations were based on biological populations: blue-winged teal

(Figure 1) and freshwater mussels (Figure 2).   The artificial population was based on an

indicator function and could represent the presence or absence of a rare event.

We used simple random sampling in the first stage to sample PSUs. In practice, if

the sizes of PSUs are similar and auxiliary variables are not available, then use of simple
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random sampling would be acceptable. Otherwise, the sizes of PSUs or other auxiliary

variable could be incorporated in the design to increase efficiency, although that would

affect the inclusion probabilities πi’s. Using simple random sampling in the first stage, we

have

τ̂ = M
1
m

m∑
i=1

τ̂i = M ¯̂τ , (4.1)

its variance is

var[τ̂ ] = M 2
(

1 − m

M

) 1
m

1
M − 1

M∑
i=1

(τi − τ)2 +
M

m

M∑
i=1

var[τ̂i], (4.2)

with unbiased estimator

v̂ar[τ̂ ] = M 2
(

1 − m

M

) 1
m

1
m − 1

m∑
i=1

(τ̂i − ¯̂τ)2 +
M

m

m∑
i=1

v̂ar[τ̂i]. (4.3)

We computed relative efficiencies of two-stage sequential sampling over simple ran-

dom sampling and traditional two-stage sampling. To compute variance of simple random

sampling, say var[τ̂s], and of conventional two-stage sampling, say var[τ̂t], we set sample

size equal to the effective sample size, namely E[ν]; ν is final sample size for two-stage

sequential sampling. Expected final sample size is

E[ν] =
m

M

M∑
i=1

{
ni1 + ni2

(
1 −

(
Ni−Li

ni1

)(
Ni

ni1

) )}
,

where Li is the number of units satisfying condition C in the primary unit i. We simulated

10,000 samples for given m, n1, and n2. If νk denotes the final sample size for replication

k, we then have

E[τ ] = τ̄ =
1
r

r∑
k=1

τ̂k and E[ν] =
1
r

r∑
k=1

νk,

where r (=10,000) is the number of replications. We then calculated

var(τ̂) =
1

r − 1

r∑
k=1

(τ̂k − τ̄)2.

For all cases Monte Carlo errors, (τ̄ − τ), was very close to zero.

4.1 BLUE-WINGED TEAL POPULATION

We partitioned the blue-winged teal population into M = 8 PSUs (Figure 1) to compare

results from Salehi and Seber (1997). In Section 5, we discuss the rationale for choice of

M . As it is shown in Figure 1, each PSU contained Ni = 25 units. For one set of cases
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Figure 3. The relative efficiency of estimator τ̂ for two-stage sequential sampling over estimator τ̂t for conventional
two-stage sampling with the same m and sample size E[ν]/m in the selected PSUs. Each panel represents a
different value for ni2. The target population was the blue-winged teal population presented in Figure 1.

we let m = 2, 4, 6, 8; ni1 = 1, 2, . . . , 10; and ni2 = 1, 2, . . . , 10. In another set of cases

where m = 2, 4, 6, 8; ni1 = 1, 2, 3, 4, 5; and ni2 = 13, 14, . . . , 20, we computed E[ν] and

var[τ̂ ] using 10,000 replications for all 560 cases. The condition for sequential sampling

was yij > 10. We computed var[τ̂s] with sample size equal to the effective sample size,

E[ν], and computed var[τ̂t] with a sample size m of PSU’s and a sample size of E[ν]/m units

in each selected PSU. We defined the efficiency of two-stage sequential sampling relative

to simple random sampling and conventional two-stage sampling as the following

effs[τ̂ ] =
var[τ̂s]
var[τ̂ ]

efft[τ̂ ] =
var[τ̂t]
var[τ̂ ]

.

The plot of efft[τ̂ ] for different values of ni1 and ni2 is given in Figure 3. The range

of efft[τ̂ ] was from .93 to 2.1 or equivalently a 7% loss to 110% gain in efficiency over

conventional two-stage sampling. In only 5 of the 560 cases was efft[τ̂ ] less than one. It

was .93 for m = 2, ni1 = 1, ni2 = 2; .97 for m = 2, ni1 = 1, ni2 = 5; .98 for m = 4,

ni1 = 8, ni2 = 1; .95 for m = 6, ni1 = 1, ni2 = 2; and .98 for m = 8, ni1 = 1, ni2 = 1.

Efficiency was an increasing function of m, ni1, and ni2.

The plot of effs[τ̂ ] for different values of E[ν] is given in Figure 4. The range of effs[τ̂ ]
was from .93 to 2.09 which means a 7% loss to 109% gain in efficiency over simple random

sample. In only four of the cases was effs[τ̂ ] less than one; all cases had ni1 = 1. It was .93

for m = 2, ni1 = 1, ni2 = 2; .98 for m = 2, ni1 = 1, ni2 = 5; .95 for m = 6, ni1 = 1,
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Figure 4. The relative efficiency of estimator τ for two-stage sequential sampling over estimator τ̂s for simple
random sampling with the same effective sample size E[ν]. Each panel represents a different value for ni2. The
target population was the blue-winged teal population presented in Figure 1.

ni2 = 2; and .98 for m = 8, ni1 = 1, ni2 = 1. Efficiency was an increasing function of m,

ni1, and ni2.

To compare two-stage adaptive cluster sampling (Salehi and Seber 1997) and two-stage

sequential sampling, we computed variances of the modified Hansen-Hurwitz estimator, say

var[τ̂HH], the modified Horvitz-Thompson estimator, say var[τ̂HT], and the effective sample

size for two-stage adaptive cluster sampling, say E[ν∗], for different initial sample sizes.

Because sequentially added units, ni2, are confined in the selected primary units it is more

appropriate to compare var[τ̂ ] with variances of estimators for the nonoverlapping scheme

of the two-stage adaptive design. For m = 4, 8, n0i = 1, 2, . . . 10 (i.e., the initial sample size

from each primary sample unit), and with the condition yij > 10, we computed the variances

of estimators and the effective sample sizes for two-stage adaptive cluster sampling, E[ν∗].
We defined

eff·[τ̂HH] =
var[τ̂·]

var[τ̂HH]
eff·[τ̂HT] =

var[τ̂·]
var[τ̂HT]

and in place of “.” we used s to denote simple random sampling and t to denote conventional

two-stage sampling.

For specific m and E[ν∗], we found the closest E[ν] with the same m from our study,

and the results are given in Table 1. As expected the efficiency of the HT estimator is greater

than that of the HH estimator (Salehi 2003). For 16 out of the 20 cases, the eff·[τ̂ ]’s were

greater than eff·[τ̂HT]’s (Table 1).
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Table 1. The Relative Efficiencies of Estimators for Population of Blue-Winged Teal in Figure 1. Esti-
mators are HH and HT for two-stage adaptive cluster sampling design with nonoverlapping
scheme. Efficiencies for m = 4, 8 and initial sample size ni 0 = 1, 2, . . . , 10 are presented in
columns 7, 8, 9, and 10. The effective sample sizes, E[ν∗], are given in column 3. From our
study given in Figure 3 and 4, we choose the closest effective sample sizes, E[ν], with the
same m for two-stage adaptive sampling, and their relative efficiencies are given in columns
11 and 12.

m n0 i E[ν∗] n1 i n2 i E[ν] efft[τ̂HT] efft[τ̂HH]  effs[τ̂HT] effs[τ̂HH] efft[τ̂ ] effs[τ̂ ]

4 1 5.44 1 7 5.42 1.26 1.26 1.26 1.26 1.19 1.20
4 2 10.64 2 7 10.62 1.28 1.26 1.28 1.26 1.17 1.19
4 3 15.62 2 20 15.63 1.30 1.26 1.30 1.26 1.53 1.56
4 4 20.41 3 16 20.57 1.31 1.26 1.32 1.26 1.46 1.50
4 5 25.02 4 14 25.39 1.33 1.26 1.34 1.27 1.45 1.49
4 6 29.48 4 20 29.51 1.34 1.25 1.36 1.27 1.62 1.68
4 7 33.80 5 17 33.53 1.35 1.25 1.37 1.27 1.60 1.67
4 8 37.99 7 10 37.81 1.36 1.25 1.38 1.26 1.42 1.49
4 9 42.08 8 10 42.70 1.36 1.25 1.38 1.26 1.43 1.52
4 10 46.07 9 9 46.24 1.36 1.24 1.39 1.26 1.40 1.50

8 1 10.88 1 7 10.84 1.27 1.27 1.26 1.26 1.18 1.17
8 2 21.28 2 7 21.29 1.30 1.28 1.29 1.27 1.19 1.18
8 3 31.25 2 20 31.22 1.33 1.29 1.33 1.28 1.62 1.62
8 4 40.82 3 16 41.26 1.37 1.30 1.36 1.30 1.57 1.56
8 5 50.05 4 13 49.40 1.40 1.31 1.40 1.31 1.59 1.59
8 6 58.75 4 20 58.83 1.44 1.32 1.44 1.32 1.99 1.98
8 7 67.60 7 7 68.02 1.48 1.32 1.47 1.33 2.08 2.08
8 8 75.98 7 10 75.66 1.52 1.34 1.51 1.34 1.69 1.69
8 9 84.15 8 9 83.23 1.55 1.35 1.55 1.35 1.68 1.68
8 10 92.13 9 9 92.44 1.59 1.36 1.59 1.36 1.77 1.76

4.2 FRESHWATER MUSSEL POPULATIONS

The region for freshwater mussel populations was partitioned into 4,800 quadrats (Fig-
ure 2). Simulations for 24, 48, and 96 PSUs were conducted. Because results were similar
in each case, we show results for 48 PSUs of size 100 quadrats each. We computed the
efficiency of two-stage sequential sampling compared to conventional two-stage sampling,
efft[τHT], for m = 35, 48; ni1 = 4, 6, 8, 10, 12, 14; and ni2 = 2, 4, 6. These cases were
selected to arrive at sample sizes typical of freshwater mussel surveys.

For the clustered but not rare population of E. complanata, two-stage sequential sam-
pling was efficient for 32 out of the 36 cases (Figure 5). Losses in efficiency occurred when
ni1 = 4 and ni2 = 6.

For the clustered and rare population of E. fisheriana, two-stage sequential sampling
was efficient in all cases (Figure 5). Efficiency ranged from 1.02 to 1.18. There did not
appear to be much gain in efficiency for ni1 > 10. Efficiency tended to increase as m and
ni2 increased.

For the rare but not clustered population of L. cariosa, two-stage sequential sampling
did not result in a major gain or loss in efficiency (Figure 5). Efficiency ranged from .97
to 1.03. Because the population is not clustered, extra sampling in the vicinity of observed
mussels does not increase the likelihood of finding additional mussels. Thus, we did not
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Figure 5. The relative efficiency of estimator τ̂ for two-stage sequential sampling over estimator τ̂t for conventional
two-stage sampling with the same m = 35, 48 and sample size E[ν]/m in the selected PSUs. The target populations
were Elliptio fisheriana, Elliptio complanata, and Lampsilis cariosa populations presented in Figure 2.

expect a gain in efficiency. However, there was not a loss in efficiency either due to the
application of two-stage sequential sampling.

4.3 INDICATOR FUNCTION (PRESENCE/ABSENCE) POPULATION

To demonstrate properties of two-stage sequential sampling for an indicator function
population (e.g., population comprised of the presence or absence of a rare event), we
considered a population of size 5,000, which was partitioned into 50 PSUs of size 100.
There were no rare events in 46 PSU’s and four remaining units contained 1, 2, 47, and 55
rare events. We considered the objective of estimating population total, τ = 105.

We computed E[ν], effs[τ̂ ] and efft[τ̂ ], for m = 10, 20, 30, 40, 50, ni1 = 1, 2, 3, 4,
and ni2 = 1, 2, 3, 4, 5, 10, 20, 30. The results for m = 40, 50, ni1 = 1, 2, 3, 4, and ni2 =
2, 4, 10, 20 are presented in Table 2. In all cases the eff·[τ̂ ] were greater than one. Efficiency
ranged from 8% to 189% when the comparison was to conventional two-stage sampling
and from 5% to 459% when the comparison was to simple random sampling. The result in
the last row of Table 2 was for a two-stage sequential sampling with m = 50, ni1 = 5, and
ni2 = 20 for which the effective sample size was 291.8 (i.e., effective sample fraction was
less than 6%) and the CV[τ̂ ] =

√
var[τ̂ ]/τ̂ was less than 16.5%.
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Table 2. Relative Efficiency for the Indicator Function Population of Size 5,000, Which is Partitioned into
50 Primary Units of Size 100. There is no rare event in 46 primary units and four remaining units
contain 1, 2, 47, 55 rare events. For different values of m, ni 1, and ni 2, the variances of popula-
tion total τ were computed using simulation, var [τ̂ ]. The variances of simple random samples,
var[τ̂s], and two-stage sampling,  var[τ̂t], were computed with the same effective sample size
E[ν]. The relative efficiencies,  efft[τ̂ ] = var[τ̂ ]/var[τ̂t] and effs[τ̂ ] = var[τ̂ ]/var[τ̂s], are given
in column 6 and 7.

E[ν] m ni 1 ni,2 efft[τ̂ ] effs[τ̂ ]

82.54 40 2 2 1.16 1.60
85.04 40 2 4 1.20 1.64
92.68 40 2 10 1.14 1.52

105.20 40 2 20 1.07 1.37
123.01 40 3 2 1.17 1.42
125.97 40 3 4 1.25 1.50
134.84 40 3 10 1.32 1.54
149.66 40 3 20 1.28 1.42
163.22 40 4 2 1.18 1.27
166.40 40 4 4 1.24 1.32
176.06 40 4 10 1.35 1.39
191.97 40 4 20 1.42 1.41
203.33 40 5 2 1.14 1.10
206.71 40 5 4 1.23 1.17
216.82 40 5 10 1.33 1.24
233.46 40 5 20 1.43 1.27
103.15 50 2 2 1.22 2.37
106.35 50 2 4 1.27 2.45
115.78 50 2 10 1.21 2.35
131.78 50 2 20 1.11 2.14
153.73 50 3 2 1.35 2.61
157.39 50 3 4 1.48 2.86
168.55 50 3 10 1.71 3.31
187.22 50 3 20 1.63 3.16
204.02 50 4 2 1.34 2.59
208.04 50 4 4 1.64 3.18
220.00 50 4 10 2.02 3.91
240.26 50 4 20 2.28 4.41
254.19 50 5 2 1.34 2.60
258.36 50 5 4 1.63 3.15
270.98 50 5 10 2.21 4.27
291.80 50 5 20 2.89 5.59

5. DISCUSSION

The two-stage sequential sampling design is adaptive because the final sample depends

on observed values, but it is free of the constraints imposed by neighborhood-based adaptive

sampling. As a result, two-stage sequential sampling avoids edge units, which have limited

the efficiency of adaptive cluster sampling in some cases. In addition, the design restrains

the final sample size because selection of adaptive units is restricted to be no more than ni2

in each PSU. In a sense, two-stage sequential sampling is a “restricted” adaptive sampling

design (see Brown and Manly 1998). Unlike restricted adaptive cluster sampling, however,

the estimators for two-stage sequential sampling are unbiased due to our use of Murthy’s

estimator.
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We first intended to develop a sampling design for which an additional sample is

selected whenever at least a predetermined number of selected units in primary sample unit

i, say n∗
ij , satisfy condition C. We found that by setting n∗

ij = 1 and changing the condition

C and ni2, we achieved sampling designs with similar properties to two-stage sequential

sampling with n∗
ij greater than 1. Fixing n∗

ij = 1 greatly simplified the formulation.

A wide range of sampling designs are possible through the choice of a method to select

PSUs, condition C, ni1, and ni2. We evaluated many more choices for ni1 and ni2 than

those given in this article under a simple design for PSU selection and found that nearly

all choices lead to greater efficiency than either two-stage adaptive cluster sampling or

conventional two-stage sampling. Improvement over neighborhood-based adaptive cluster

sampling designs was most evident when effective sample sizes were moderate to large,

for example, sampling fraction > .05. When effective sample sizes were relatively small,

two-stage adaptive cluster sampling was more efficient than two-stage sequential sampling

(see Table 1). Further development of the two-stage sequential sampling design could focus

on designs where ni1 and ni2 vary among PSUs and on designs with unequal sized PSUs.

The most important step when applying sequential two-stage sampling is to partition

the population into PSUs in such a way that confines rare events to a few PSUs. For these

few PSUs a large proportion of their units will contain the rare events. The “optimal” design

when the rare events are clusters is to have PSU’s that are the same size as the clusters so that

there is one cluster per PSU. We then select relatively small ni1 and relatively large ni2. For

example, we partitioned the blue-winged teal population into PSUs ranging from 50 PSUs

of 4 units to 2 PSUs of 100 units and found two-stage sequential sampling to be an efficient

sampling design for all cases. However, the efficiency of two-stage sequential sampling

relative to simple random sampling, effs[τ̂ ], ranged from 1.005 to a stunning 2,051 and the

efficiency of two-stage sequential sampling relative to two-stage sampling, efft[τ̂ ], ranged

from 1.006 to an equally stunning 1,350. The most efficient sampling design corresponded

to 50 PSU’s of size 4 units with condition c > 0, ni1 = 1 , and ni2 = 3. In this design,

one PSU contains units with counts of 7,144, 6,339, 150, and 6. This PSU has 13,639 out

of the 14,121 blue-winged teals in the population. All the units in this PSU will be in the

sample set with probability one in this sampling design. We note that identifying the most

efficient design requires more knowledge about the population than is often available in

practice. Efficient designs are attainable with little prior information. However, when some

information about the rare clusters is available, then we recommend choosing PSUs so that

there is one cluster per PSU and the PSU is roughly the size of the cluster.

We can provide general guidelines for choosing appropriate values for C, ni1, and ni2.

Suppose that the condition has the form of yij > c and consider the two extreme cases. If we

choose c too small such that almost all yij’s become greater than c, then two-stage sequential

sampling would tend to be more like conventional two-stage sampling with ni = ni1 +ni2.

If we choose c too big such that almost all yij’s are smaller than c, then two-stage sequential

sampling would tend to be more like conventional two-stage sampling with ni = ni1. If

the variable of interest is an indicator function (i.e., takes either 0 or 1), there is no problem
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choosing the condition C. However, there should be a set of optimal (or nearly optimal)

values for different population models, and simulation may be required to find these values.

Based on our study, larger value of ni1’s and smaller value of ni2’s resulted in small

improvement in efficiency, but the improvement was observed for almost all of the popula-

tions under study. For some cases, small values of ni1’s and large values of ni2’s resulted in

a great improvement in efficiency, but there were some cases where such a design resulted

in a loss of efficiency. Thus, if we do not know how the degree of rarity and clustering in

the population, then we recommend moderate or larger values of ni1’s and relatively small

values of ni2’s. If we know the population is highly clustered and these clusters are confined

in a few PSUs we recommend setting ni2 to be a large proportion of Ni. It is important

to mention that if we fail to make optimal choices for PSUs, C, ni1, and ni2 efficiency of

sequential two-stage sampling would be similar to conventional two-stage sampling.

When a rare and clustered population is partitioned into PSUs such that there is no more

than one cluster per PSU and the PSU is roughly the size of the cluster, most PSUs will

be empty and a few will contain rare events. Hence, the variance within PSUs will be less

than the variance between PSUs. For such a population, stratified sampling is an efficient

design (two-stage sampling with m = M ). This was true for the E. fisheriana population

where greatest efficiency was found when m = M . We conclude that two-stage sequential

sampling with larger m can therefore be more efficient. Our simulation study confirms this

fact. For the indicator-function population when m was small (m = 5, 10, 20) even though

two-stage sequential sampling was more efficient than the conventional two-stage sampling,

it was less efficient than simple random sampling.

For m = M , two-stage sequential sampling provides an optimal-type allocation even

when a priori information on PSU-specific variance is unavailable. When condition C has

the form of yij > c or yij < c, as it is frequently, and those units satisfying condition C

have very large or very small values, the rare units will have yij far from the mean of the

ith PSU. Two-stage sequential sampling therefore allocates more samples to the primary

sample units (strata) with larger standard deviations. It is in line with Neyman allocation

for stratified sampling (Cochran 1977). We can therefore expect that sample variance from

two-stage sequential sampling will be similar to stratified sampling with optimal allocation.

To implement stratified sampling with optimal allocation we would need reliable estimates

of strata-specific standard deviations, which might not be available. However, optimal-type

allocation is a natural product of the two-stage sequential sampling design.

An obvious alternative to the two-stage sequential sampling with m = M is strati-

fied sampling in which a pilot survey is conducted using proportional allocation, then pilot

survey results are used to calculate optimal allocation and strata are sampled accordingly.

Environmental and ecological surveys are usually time consuming and logistically expen-

sive. A stratified sampling design that includes a pilot survey would require two separate

field trips. We must have the data from all strata taken during the first trip to calculate opti-

mal allocation. We would then return to the strata to conduct the optimal stratified sample.

It could be quite prohibitive in term of time or logistics to conduct such a survey. Using
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the two-stage sequential sampling with m = M , a near-optimal stratified sample could be

taken in one field trip and we just travel inside PSUs for selecting the adaptively selected

ni2 units. The decision to take extra samples could be made prior to leaving a stratum. A

potential inefficiency would be due to having to traverse the same area when sampling the

ni2’s after already sampling the ni1’s.

Finally, it is often desirable and natural to partition the population under study into

PSUs regardless of the issue of sampling rare and clustered populations. For example, if

a rare event is related to socio-economic status, then districts or blocks are appropriate

partitions of a city. Sampling freshwater mussels is expensive and labor intensive especially

in deep water where SCUBA diving is required (Strayer and Smith 2003). In rivers, SCUBA

divers must work close to an anchored boat for safety, and repositioning the boat is time

consuming. Thus, it is practical to sample in stages by first selecting a primary unit to

position the boat and then selecting secondary units for collection of freshwater mussels.

If we want to estimate population size of a rare species, then the amount of habitat is an

appropriate way to gauge the partitioning of the study area into PSUs. If species distribution

is known to be restricted to a small fraction of a site and auxiliary information is available,

a stratified sampling could be designed to confine rare units to a few strata (Kalton and

Anderson 1986; Christman 2000). However, if species distribution is unknown or relevant

auxiliary information is not in the sampling frame, then two-stage sequential sampling can

still be an efficient sampling design by partitioning the population in a haphazard fashion

for rare and highly clustered populations.

APPENDIX

Evaluation of P (si|j)
P (si)

. If ni2 = 0, P (si)would be 1/
(

Ni

ni1

)
and P (si|j) would be

1/
(

Ni−1
ni1−1

)
. Thus

P (si|j)
P (si)

=
Ni

ni1
.

If ni2 > 0 and li > ni2 there would be at least one sample unit satisfying C which is placed

in the ni1 first samples for all possible permutation of ni1 + ni2 sample units. This means

that all possible initial samples of size ni1 give rise to select another sample of size ni2.

Hence, P (si) = 1/
(

Ni

ni1+ni2

)
and P (si|j) = 1/

(
Ni−1

ni1+ni2−1

)
. Thus

P (si|j)
P (si)

=
Ni

ni1 + ni2
.

If ni2 > 0, li ≤ ni2 and j satisfies C, the probability of choosing an ordered sample

giving rise to si is 1/(Ni × Ni − 1 × · · · × Ni − ni1 − ni2 + 1). Those permutations

without a sample unit satisfying C in the ni1 first samples do not give rise to si. To find

the number of permutation not giving rise to si, we first allocate all the li sample units

satisfying C to the ni2 last samples which can be done by ni2 ×ni2 − 1 ×· · ·×ni2 − li + 1
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and we allocate the ni1 + ni2 − li remaining sample units to the rest of places which

can be done by (ni1 + ni2 − li)!. Hence the number of permutations giving rise to si is

(ni1+ni2)!−(ni2×ni2−1×· · ·×ni2−li+1)(ni1+ni2−li)!. Thus P (si) = {(ni1+ni2)!−
(ni2×ni2−1×· · ·×ni2−li+1)(ni1+ni2−li)!}/{(Ni×Ni−1×· · ·×Ni−ni1−ni2+1)}.

Because unit j satisfies C all permutations of the remaining sample units give rise to si,

P (si|j) = 1/
(

Ni−1
ni1+ni2−1

)
. Thus

P (si|j)
P (si)

=
Ni(ni1 + ni2 − 1)!

(ni1 + ni2)! − ni2!(ni1 + ni2 − li)!/(ni2 − li)!
.

When ni2 > 0, li ≤ ni2 and j does not satisfy C, P (si) is the same as the previous case.

The probability of choosing an ordered sample giving rise to si|j is 1/(Ni − 1 × · · · ×
Ni − ni1 − ni2 + 1). Because j does not satisfy C those permutations without a sample

unit satisfying C in the remaining ni1 − 1 first samples do not give rise to si|j. To find

the number of permutations not giving rise to si|j, we first allocate all the li sample units

satisfying C to the ni2 last samples which can be done by ni2 ×ni2 − 1 ×· · ·×ni2 − li + 1

and we allocate the ni1 + ni2 − li − 1 remaining sample units to the rest of places which

can be done by (ni1 + ni2 − 1 − li)!. Hence the number of permutations giving rise to

si is (ni1 + ni2 − 1)! − (ni2 − 1 × · · · × ni2 − li + 1)(ni1 + ni2 − 1 − li)!. Thus,

P (si|j) = {(ni1 + ni2 − 1)! − (ni2 − 1 × ni2 − 2 × · · · × ni2 − li + 1)(ni1 + ni2 − 1 −
li)!}/{(Ni − 1 × Ni − 2 × · · · × Ni − ni1 − ni2 + 1)}. Thus

P (si|j)
P (si)

=
Ni{(ni1 + ni2 − 1)! − ni2!(ni1 + ni2 − 1 − li)!/(ni2 − li)!}

(ni1 + ni2)! − ni2!(ni1 + ni2 − li)!/(ni2 − li)!
.

Evaluation of P (si|j,j′)
P (si)

. If ni2 = 0, P (si)would be 1/
(

Ni

ni1

)
and P (si|j, j′) would be

1/
(

Ni−2
ni1−2

)
. Thus,

P (si|j)
P (si)

=
Ni(Ni − 1)
ni1(ni1 − 1)

.

If ni2 > 0 and li > ni2, P (si) = 1/
(

Ni−2
ni1+ni2

)
and P (si|j, j′) = 1/

(
Ni−2

ni1+ni2−2

)
. Thus,

P (si|j)
P (si)

=
Ni(Ni − 1)

(ni1 + ni2)(ni1 + ni2 − 1)
.

If ni2 > 0, li ≤ ni2 and either j or j′ satisfies C, P (si) = {(ni1 + ni2)! − (ni2 × ni2 −
1 × · · · × ni2 − li + 1)(ni1 + ni2 − li)!}/{(Ni × Ni − 1 × · · · × Ni − ni1 − ni2 + 1)}.

Since either j or j′ satisfies C all permutations of the remaining sample units give rise to

si, P (si|j, j′) = 1/
(

Ni−2
ni1+ni2−2

)
. Thus,

P (si|j, j′)
P (si)

=
Ni(Ni − 1)(ni1 + ni2 − 2)!

(ni1 + ni2)! − ni2!(ni1 + ni2 − li)!/(ni2 − li)!
.

If ni2 > 0, li ≤ ni2 and neither j nor j′ satisfy C, P (si) is the same as the previous case.

The probability of choosing an ordered sample giving rise to si|j, j′ is 1/(Ni − 2 × · · · ×
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Ni −ni1 −ni2 +1). Because neither j nor j′ satisfy C those permutations without a sample

unit satisfying C in the remaining ni1 − 2 first samples do not give rise to si|j, j′. To find

the number of permutations not giving rise to si|j, j′, we first allocate all the li sample units

satisfying C to the ni2 last samples which can be done by ni2 ×ni2 − 1 ×· · ·×ni2 − li + 1

and we allocate the ni1 + ni2 − li − 2 remaining sample units to the rest of places which

can be done by (ni1 + ni2 − 2 − li)!. Hence the number of permutations giving rise

to si is (ni1 + ni2 − 1)! − (ni2 − 1 × · · · × ni2 − li + 1)(ni1 + ni2 − 1 − li)!. Thus

P (si|j, j′) = {(ni1 + ni2 − 2)! − (ni2 − 2 × ni2 − 3 × · · · × ni2 − li + 1)(ni1 + ni2 −
2 − li)!}/{(Ni − 1 × Ni − 2 × · · · × Ni − ni1 − ni2 + 1)}. Thus,

P (si|j, j′)
P (si)

=
Ni(Ni − 1){(ni1 + ni2 − 2)! − ni2! (ni1+ni2−li−2)!

(ni2−li)! }
(ni1 + ni2)! − ni2! (ni1+ni2−li)!

(ni2−li)!

.
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