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Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are
benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We
applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the
Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low
density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon
species; however, it did not improve precision of density estimates. Because finding uncommon
species, collecting individuals of those species, and estimating their densities are important
conservation activities, additional research is warranted on application of adaptive cluster sampling
to freshwater mussels. However, at this time we do not recommend routine application of adaptive
cluster sampling to freshwater mussel populations. The ultimate, and currently unanswered, question
is how to tell when adaptive cluster sampling should be used, i.e., when is a population sufficiently
rare and clustered for adaptive cluster sampling to be efficient and practical? A cost-effective
procedure needs to be developed to identify biological populations for which adaptive cluster
sampling is appropriate.
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1. Introduction

Adaptive cluster sampling (Thompson and Seber, 1996) is an intuitively appealing
approach to sampling clustered populations when cluster membership is not known prior
to sampling. Perhaps most appealing, from a biologist’s perspective, is that adaptive
cluster sampling resembles the manner a biologist collects biological organisms,
especially rare ones. Adaptive cluster sampling, which results in design-based estimates
of population density, allows a biologist to survey for an organism of interest, and once the
organism is found, the biologist can continue to search and collect organisms nearby.
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Increasing effort in response to finding what you are looking for is the natural practice of
those who search for rare and clustered objects, e.g., biologists, anglers, hunters, birders,
bargain shoppers, and even some game players (consider, for example, the game of
Battleship by Milton-Bradley®).

From a statistical perspective, adaptive cluster sampling is appealing because it is
efficient for rare and clustered populations (Thompson and Seber, 1996; Christman, 1997).
Density of rare and clustered populations is difficult to estimate precisely using
conventional sampling designs. The two factors that interact to determine efficiency of
adaptive cluster sampling are within network variance relative to population variance and
final sample fraction relative to initial sample fraction (Thompson, 1990; Smith et al.,
1995). Adaptive cluster sampling, as with conventional cluster sampling, is efficient when
within network (or within cluster) variance is close to population variance, which occurs
when the population is clustered. Simultaneously, adaptive cluster sampling is efficient
when final sample size is close to initial sample size, which occurs when the population is
rare.

Two issues temper the appeal of adaptive cluster sampling: (1) efficiency depends on
degree of rarity and clustering, which is unknown prior to sampling, and (2) the final
sample size is random, which adds uncertainty to survey planning. Misapplication of
adaptive cluster sampling can result in failure to achieve desired precision or in a final
sample size that exceeds a survey’s budget. Excessive final sample size can result when the
biological population is not as rare as or is more widely distributed than anticipated,;
practitioners of adaptive cluster sampling refer to this problem colloquially as
encountering ‘‘the cluster from hell’”’. Recent work has focused on limiting the final
sample size (Brown and Manly, 1998; Thompson and Seber, 1996; Salehi and Seber,
1997). However, if and when a population is sufficiently rare and clustered for adaptive
cluster sampling to be efficient is, at this time, an open question.

Although there have been many simulation studies of adaptive sampling, there have
been few documented field trials on real biological populations. Our objective was to
apply adaptive cluster sampling to biological populations, which tend to be spatially
clustered and found at low density, and evaluate its performance. Freshwater mussels are
benthic macroinvertebrates that cluster spatially and are frequently found at low densities
(Kovalak et al., 1986; Downing and Downing, 1992; Strayer and Ralley, 1993). Thus,
freshwater mussels seem to be ideal candidates for adaptive cluster sampling (Dorazio,
1999). Strayer et al. (1996) applied adaptive cluster sampling to freshwater mussel
populations, but did not evaluate the application. We applied adaptive cluster sampling at
24 sites in the Cacapon River, WV to estimate density of freshwater mussels. In Section 2,
we outline the survey design. In Section 3, we evaluate our application of adaptive cluster
sampling in terms of efficiency, yield of individuals, and detection of uncommon species.
We offer conclusions and suggestions in Section 4.

2. Application to a survey of freshwater mussels

Conservation of North American freshwater mussels (Bivalvia: Unionidae) is at a critical
juncture with their extinction rates rivaling those of tropical species (Ricciardi and
Rasmussen, 1999). Freshwater mussel diversity is threatened by anthropogenic activities



Application of adaptive cluster sampling to low-density populations 9

such as dam building, land use induced changes in water quality, spread of exotic species
(e.g., zebra mussels), and over-harvest of some large river species (Williams et al., 1993).

Identifying locations of populations and estimating population parameters, such as
population density, are integral to research, conservation, and management of freshwater
mussels. There is an important, unmet need for sampling techniques that will yield precise
estimates of low-density (sparse) populations of freshwater mussels (Strayer et al., 1996).
Spatial aggregation of freshwater mussels, a characteristic that adds to the challenge of
precise estimation, is likely due to the role of aggregation in reproduction and the
association between mussel occurrence and patchily distributed habitat. Downing et al.
(1993) found that fertilization success was strongly correlated with spatial aggregation.
Strayer and Ralley (1993) found that current speed, which exhibits within-site variation,
was a useful predictor of mussel occurrence.

2.1 Sampling methods

We applied adaptive cluster sampling at sites along the Cacapon River, WV, which is a 3rd
order stream in the upper Potomac River drainage. Sampling was restricted to the riffle
habitat type because it is shallow and does not require SCUBA diving to collect mussels.
The extent of the site was determined by the extent of the habitat.

To avoid over-sampling (which could occur when the final sample size is many
multiples of the initial sample size), we used double sampling for stratification (Cochran,
1977) to limit the application of adaptive cluster sampling only to low-density sites. First,
we selected 30 sites throughout the Cacapon River in a constrained random fashion by
selecting one site at random in each 4 km stretch of river. Then at each site, we assessed
density level of all species qualitatively by searching in a haphazard fashion throughout
the site and counting mussels using glass-bottom buckets for 1 hr (e.g., two biologists for
30 min or four biologists for 15 min). Based on the qualitative assessment of density, we
classified sites into two strata (i.e., low and high density). From previous experience
sampling mussels in this river, we decided a priori that 30 mussels counted per hour would
be the cut off between low (<1 mussel per m?) and high-density (> 1 mussel per m?)
strata. Site area (including islands) ranged from 337 to 2177 m? in low-density sites, and
199 to 3020 m? in high-density sites. Finally, we used adaptive and conventional sampling
to subsample the low and high-density sites, respectively. Here, we report only on the
results from adaptive cluster sampling; results from other sites will be reported elsewhere.

We used 0.25m? quadrats, a standard sampling unit size for freshwater mussels, to
sample within a site. The initial sample of 0.25m? quadrats was placed systematically
throughout the site to achieve good spatial coverage. Bank-to-bank transects were located
at 5m intervals with a random start; then quadrats were placed along transects at 3m
intervals with a random start on each transect. The initial sample size depended on the
wetted area of a site (excluding islands). Adaptive sampling was triggered by detection of
> 1 mussel in a quadrat. The neighborhood included the quadrat that met the criterion and
the four adjacent quadrats.

The manner of placing initial quadrats resulted in joint inclusion probabilities equal to
zero for some units. Thus, variance could not be estimated without further assumptions.
We proceeded by treating the initial sample as a simple random sample, and we expected
that variances would be overestimated as a result (Thompson, 1992).
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2.2 Evaluation of the design

We evaluated adaptive versus conventional sampling by fixing cost and comparing
precision, as measured by coefficient of variation (CV). For each site, CV was calculated
for adaptive cluster sampling (CV 5cg), simple random sampling given the initial sample
size (CVgrg|n1), and simple random sampling given the final sample size (CVggg, ). The
final sample size (v) was a count of all network quadrats plus edge units. To predict CV for
conventional sampling, we estimated the population variance from the initial sample (62)
then calculated the variance as (1 — f;1)6'2 /n, where f, was the sampling fraction for
sample size of n, and then we set 7 to the value of the initial sample size for CVggg),; and
the final sample size for CVggg),. This prediction is commonly done when planning a
survey based on data from a pilot survey. The estimate of population variance derived from
a pilot survey is used commonly to calculate sample size or to predict estimator precision
for a given sample size. Here we use an estimate of population variance based on the initial
sample to predict estimator CV for the initial and final sample sizes.

We used logistic regression to compute the probability of sampling species other
than Elliptio complanta (eastern elliptio) for initial and adaptive quadrats. The Cacapon
River mussel fauna included six species. E. complanata, which tends to be the most
common species in Atlantic slope rivers, was the most abundant species in the Cacapon
River. Other species were comparatively uncommon. These species were Lampsilis
cariosa (yellow lampmussel), Elliptio fisheriana (northern lance), Alasmidonta
varicosa (brook floater), Lasmigona subviridis (green floater), and Strophitus undulatus
(squawfoot).

3. Results

Adaptive cluster sampling did not improve relative precision over simple random
sampling for fixed sample size (Table 1). Efficiency tended to decrease as density
increased, and the greatest inefficiency was at the site with the highest density (0.71/m?)
and variance-to-mean ratio (1.60). If the cost to locate sampling units is high then
precision for fixed cost might be more favorable for adaptive cluster sampling, which
tends to arrange units close together. However, cost to place a quadrat was minimal.
Therefore, we do not expect that the comparison of precision would change substantially,
if we fixed on total cost rather than sample size.

Yield, in terms of collecting individual mussels and detecting uncommon species, was
higher in adaptively sampled quadrats. For reaches where density exceeded 0.15 mussels
per m?, mussels per quadrat tended to be higher for adaptive quadrats (Fig. 1). Based on
the logistic regression model in Table 2, the odds ratio for sampling uncommon species in
adaptive relative to initial quadrats was 27.7 (95% CI: 1.1, 678.5). We show predicted
probabilities of sampling uncommon species in Fig. 2.

The final sample size was at most 3.8 times the initial sample size (Table 1). At
approximately 72% of the adaptively sampled reaches, final sample size was < 1.5 times
the initial sample size; at approximately 88% of the reaches, final sample size was <2.0
times the initial sample size.
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Table 1. Results from 18 sites on the Cacapon River, WV, where freshwater mussels were
sampled and adaptively cluster sampling was applied. There were 24 sites where adaptive
cluster sampling was applied; however, at six of those sites freshwater mussels were not
detected. Coefficient of variation (CV) was calculated for adaptive cluster sampling
(CVacs), simple random sampling given the initial sample size (CVsgsjn —n1), and simple
random sampling given the final sample size (CVgrgn—y)-

Variance Initial ~Final  Ratio of Final Coefficient of variation Ratio of
Density Standard to Mean Sample Sample to Initial CVsrsin=uv 10
(no./m?) Error Ratio Size Size Sample Size CVacs CVsrsin=ni CVsrsin—=v CVacs

0.03 0.0327 1 121 124 1.02 099 0.99 0.88 0.89
0.06 0.0566 1 70 74 1.06 099 099 0.96 0.97
0.08 0.0825 1 48 52 1.08 099 0.99 0.95 0.96
0.11 0.0523 092 149 164 1.10 049 049 0.47 0.96
0.12 0.0806  0.99 69 77 1.12 0.70  0.70 0.66 0.94
0.18 0.0877 097 119 151 1.27 049 049 0.48 0.98
0.18 0.0867  0.97 90 111 1.23 0.49 049 0.44 0.90
0.19 0.0884 1.3 125 145 1.16 046 046 0.43 0.93
0.19 0.1086  0.97 62 73 1.18 0.56  0.56 0.52 0.93
0.20 0.1085  0.97 62 76 1.23 0.56  0.56 0.50 0.89
0.33 0.1404 094 67 107 1.60 042 043 0.34 0.81
0.33 0.1141 1.52 112 157 1.40 035 039 0.33 0.94
0.34 0.1013 092 120 178 1.48 0.30 030 0.25 0.83
0.48 0.1991  0.90 42 67 1.60 041 042 0.33 0.80
0.57 02226 095 38 146 3.84 0.39 055 0.27 0.69
0.59 0.1453 1.49 137 264 1.93 025 026 0.18 0.72
0.63 0.285 1.21 38 71 1.87 046 042 0.30 0.65
0.71 0.2031 1.60 95 315 3.32 029 031 0.17 0.59

Table 2. Logistic model coefficients where the outcome is encountering a rare species of
mussel. Independent variables included number of quadrats and quadrat type (initial or
adaptive). Global null hypothesis (all coefficients = 0) was rejected (X? = 29.74, 2df,
P =0.0001). Interaction between number of quadrats and quadrat type was not significant
(X?> = 0.42, 1df, P=0.51).

Variable Estimated Coefficient  Standard Error Coeff./SE  Odds Ratio
Intercept —6.6971 2.0395 3.2837

Number of quadrats 0.0697 0.0208 3.3510 1.072
Quadrat type 3.3223 1.6314 1.9756 27.723

4. Discussion

We found that application of adaptive cluster sampling increased yield of individual mussels
and detection of uncommon species; however, it did not improve the precision of density
estimates. In surveys of freshwater mussels, the goal of high yields of individuals and
detection of uncommon species often accompanies the goal of estimating population
density or abundance. In multiple-species surveys, emphasis is often on the uncommon
species. In such cases, malacologists might prefer sampling designs that increase the likeli-
hood of encountering uncommon species or collecting more individuals of those species.

At sites where we applied adaptive cluster sampling, density was <0.71 per m* and
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Figure 1. Yield of individual mussels in adaptively (O) and conventionally ([]) placed quadrats at
sites with low-densities (< 1/m?) of freshwater mussels. Sites with density > 0.15 m? are shown with
embedded dots. Robust regression lines are shown.

variance-to-mean ratio was < 1.6. At five of the sites where only conventional sampling
was applied, density was > 1 per m? and for three of those, variance-to-mean ratio was
> 2.6 (i.e., 2.6, 2.72, and 2.89). It is possible that adaptive cluster sampling would have
been efficient at those high-density sites. To guard against excessive sampling effort some
measure to control final sample size would have to have been implemented at high-density
sites. When applying adaptive cluster sampling to freshwater mussels, Strayer et al. (1996)
controlled final sample size by varying the criterion used to trigger adaptive sampling,
setting it higher at sites where a reconnaissance indicated high-density populations. In our
application, we were reluctant to increase the criterion as a way to control final sample
size, because the practice has an unpredictable effect on efficiency. Increasing the criterion
decreases both the within network variance and the effective sample size. The difference
between the within-network and population variances would decrease, because units with
values below the criterion would not be included in the network and units within networks
would have more uniformly high values. At the same time, the difference between the
initial and effective sample sizes would decrease, because maximum network size would
be reduced. However, these effects influence efficiency in opposite directions. Reducing
within-network variance tends to decrease efficiency, while reducing effective sample size
tends to increase efficiency. With so many possible criteria and no guidance on the
sensitivity of efficiency to these changes, we do not believe that increasing the criterion is
a practical method to control final sample size and, at the same time, enhance or maintain
efficiency.

Recent work has identified several other approaches to limit final sample size. Brown
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Figure 2. Probability of sampling uncommon species in adaptively (O) and conventionally ([])
placed quadrats at sites with low-densities (< 1/m?) of freshwater mussels. Probabilities were from
the logistic regression model presented in Table 2.

and Manly (1998) suggested that sampling could stop after cumulative sample size meets
or exceeds a preset value. The stopping rule reduces variation in final sample size, but
causes estimates to be biased. However, Brown and Manly (1998) found the stopping rule
gave reasonable results, in terms of mean square error, for several simulated populations.
Salehi and Seber (1997) suggest designing surveys based on pilot survey information from
two-stage adaptive cluster sampling. First select a small number of primary units using
random sampling, and then select secondary units within the primary sampling units by
adaptive cluster sampling. The authors indicate how one can use the pilot survey data to
compute the number of primary units required for a desired final sample size or level of
precision. Thompson and Seber (1996:160-161) discuss other approaches to control the
final sample size that utilize stratification, order statistics, partitioning into blocks (similar
to primary units in Salehi and Seber, 1997), and neighborhood definitions.
Unfortunately, we do not know if application of adaptive cluster sampling at high-
density sites on the Cacapon River would have been efficient or practical. We do know,
however, that at high-density sites precise estimates of density can be achieved by
applying conventional quadrat-based sampling without the variability in final sample size
that adaptive sampling introduces (Downing and Downing, 1992; Smith et al., 2001a,
Smith et al., 2001b). We had hoped that adaptive cluster sampling would have been
efficient at low-density sites because large sample sizes are necessary to achieve precise
estimates of low-density populations using conventional sampling (Smith et al., 2001a).
Because of the importance of finding uncommon species and collecting individuals of
those species, additional research is warranted on application of adaptive cluster sampling
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to freshwater mussels. However, at this time we cannot recommend routine application of
adaptive cluster sampling to low-density freshwater mussel populations.

Our application and evaluation was compromised by use of systematic sampling
methods with joint inclusion probabilities equal to zero for some units. We proceeded by
applying inclusion probabilities appropriate for simple random sampling and approx-
imating variances. Hence our results are approximate. We continue to favor systematic
sampling because of good spatial coverage and ease of implement in the field, which are
desirable properties for surveys of biological populations (Christman, 2000). Currently,
we implement systematic sampling with multiple random starts so that joint inclusion
probabilities exceed zero for all units and variance can be estimated without bias (Smith et
al., 2001a).

The ultimate (and currently unanswered) question is how to tell when adaptive cluster
sampling should be used, i.e., when is a population sufficiently rare and clustered for
adaptive cluster sampling to be efficient and practical? We applied adaptive cluster
sampling to populations that we suspected would be rare and clustered. Some of the
populations turned out to be rare and clustered, some were just rare, and some were just
clustered. However, even for the rare and clustered populations adaptive cluster sampling
was not efficient. A cost-effective procedure needs to be developed to identify populations
for which adaptive cluster sampling is appropriate. Part of adaptive cluster sampling’s
appeal is the fact that it can be applied without prior knowledge of cluster location.
Adaptive cluster sampling will lose its appeal if effective application demands a priori,
detailed, and costly information on density and distribution.
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