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Abstract

Eastern hemlock is in decline in many parts of its range in the eastern United States due primarily to
infestation by the hemlock woolly adelgid (HWA).  In Shenandoah National Park, HWA rapidly
killed many hemlock stands after first appearing in 1989.  While the severity of hemlock decline in
Shenandoah National Park may preclude saving the hemlock forest component, an examination of
the progression of decline across the landscape may provide insight into management potential for
other areas under threat from HWA.  We are exploring the potential to use satellite remote sensing
and geospatial modeling as a tracking tool for HWA decline in the mountainous terrain of
Shenandoah National Park.  Pre- (1984) and post- (1997) infestation Landsat TM images were
processed to remove atmospheric and topographic influences. Corrected pre-infestation images
were used to classify hemlock stand areas and were used as a mask for subsequent analysis.
Normalized difference vegetation indices (NDVI) were computed for both images, and assessed for
rates of decline.  Rates of decline from satellite imagery were compared to measures of hemlock
decline from field plots, and to terrain characteristics through the use of regression tree statistical
modeling techniques.  Satellite image-based decline measures compare favorably to field estimates
of decline, and show associations with landscape variables, especially elevation.  However,
variability in the post-infestation imagery shows only weak association with landscape variables,
suggesting uniform decline by 1997, or the influence of unmeasured fine- or coarse-scale
parameters.  Landscape analysis provides a useful tool for managers to track and assess the
progression of eastern hemlock decline due to HWA, even in areas of high relief.
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Introduction

Eastern hemlock (Tsuga canadensis) comprises about 1% by area of the forest in Shenandoah
National Park (SNP), Virginia, and occurs in cool, moist, hillside, and ravine environments (Teetor
1988).  While only a small fraction of the overall forest area, eastern hemlock is valued as a natural
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and cultural resource by park managers and the public as it provides shading to stream habitats and
unique environments for wildlife and park visitors.  Field observations by SNP park resource
managers have documented a severe and rapid decline of eastern hemlocks in many stands since
1989 when hemlock woolly adelgid (HWA) (Adelges tsugae) was first observed in the park.
HWA was first introduced into the eastern United States in the 1950s (McClure 1987) and has
since spread north and west to infest eastern hemlock stands in Connecticut, New Jersey,
Pennsylvania, Maryland, Virginia, and West Virginia.  In areas of intense infestation, defoliation by
HWA has resulted in almost total eastern hemlock mortality.  In some areas, infestation, defoliation,
and tree mortality have advanced at such a rapid pace that near complete elimination of hemlocks
trees from some forests has been observed within a span of only 3 or 4 years (McClure 1991).   In
other areas, HWA is present but only minor defoliation has been observed to date.   The
progression of HWA-induced decline has been remarkably swift in SNP, but preliminary studies
suggested that not all stands declined at the same rate, depending on their location on the landscape
(Young et al., unpublished data).

The patchy nature of eastern hemlock decline suggests landscape-level environmental factors may
be influencing the rate of decline.  Landscape pattern and structure play an important role in
governing the spread and severity of insect pests in forest ecosystems by directly influencing insect
populations and dispersal capabilities, or indirectly by influencing host tree health and distribution
(Castello et al. 1995; Perry 1988).  Powers et al. (1999) used landscape analysis to evaluate
Douglas fir bark beetle dynamics and host tree susceptibility at multiple scales and found that
landscape-scale phenomena were more strongly correlated with beetle kill events than individual
tree health factors. McClure (1990) found that wind, birds, deer, and human activities, all of which
are moderated to some extent by landscape structure, disperse HWA. Bonneau (1997) found that
eastern hemlock stands located on cold, moist, north, or northeast aspects were generally healthier
than stands in drier or more exposed areas of Connecticut.  Landscape-scale impacts from forest
defoliating insects allow the use of geospatial technologies (e.g., satellite remote sensing and
geographic information systems) for tracking and modeling forest health, and researchers have
successfully used satellite-based remote sensing to evaluate forest health impacts of HWA and other
defoliating insects in Connecticut  (Bonneau et al. 1999) and New Jersey (Royle and Lathrop
1997).

We are exploring the use of remote sensing and geospatial modeling techniques to track eastern
hemlock decline in the rugged terrain of Shenandoah National Park, and we present here initial
results from this analysis.  Shenandoah National Park straddles a ridge of the Blue Ridge Mountains
in northwestern Virginia, and is topographically complex with numerous coves and deep ravines.
Eastern hemlock occurs as a mixed forest component along stream drainages and as nearly pure
stands in high elevation coves. Although remote sensing has been shown to be a valuable tool for
monitoring forest vegetation, the steep topography of SNP poses special challenges for tracking
decline of eastern hemlock.  The steep stream corridors and sheltered coves where hemlock occurs
in the park also are some of the most difficult areas to map using satellite imagery, due to heavy
topographic shadowing in those areas.

We are attempting to answer two basic questions in this research:  Can hemlock decline be
measured using satellite imagery in the topographically challenging environment of SNP?;  and can
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hemlock decline due to HWA be associated with landscape attributes?

Methods

We are using satellite remote sensing investigations, field data collection, and landscape modeling to
assess eastern hemlock decline in Shenandoah National Park.  For this analysis, we acquired and
analyzed Landsat TM satellite images from 1984 and 1997.  Field data collection was
accomplished in the fall of 1998 and summer of 1999.  Landscape variables were derived using
GIS from digital elevation models and other digital geospatial data. We used exploratory statistical
modeling to assess relationships between image-based measures of decline and field collected
hemlock-health attributes.

Satellite Image Interpretation.    We acquired several Landsat Thematic Mapper (TM) satellite
images for use in this study.  The Landsat TM imaging satellite records reflected visible and near-
infrared light as digital images over broad areas.  This satellite captures wavelengths tuned for
vegetation study in repeatable, multi-spectral, medium-scale images (Lillesand and Kiefer 2000).
Images acquired include a pre-infestation scene from April 12, 1984, and a post-infestation scene
from April 16, 1997.  Other imagery from the spring of 1989, 1992, and 1994 was acquired to
assess the time sequence of defoliation, but we focus here on results only from the pre-(1984) and
post-(1997) infestation endpoints.  Imagery was acquired to correspond to seasonal deciduous
leaf-off periods so that vegetation response of eastern hemlock could be isolated.  Several
preprocessing steps were required to normalize the satellite imagery prior to assessment of changes
in vegetation condition.  Each Landsat TM image was reprojected into a common coordinate
system (UTM zone 17, NAD 1927).  Having an exact geographic alignment between images of
different dates is critical during a change detection procedure.

It also was critical to insure radiometric consistency between images (i.e., to be sure that each image
is displaying features in the same manner spectrally).  Differences in atmospheric conditions,
completed a topographic shading, or sensor calibration could be detrimental to detecting differences
in forest cover over time.  Therefore, we performed a “dark-object subtraction” to remove haze,
topographic normalization to control for topographic shading, and then normalized each image to a
radiometric master scene to account for sensor calibration differences or other scene-level
differences.  Dark-object subtraction was completed according to Chavez (1988). This procedure
adjusts for atmospheric haze in satellite imagery by subtracting the reflectance from known dark
objects (e.g., dark shadows) from visible and near-infrared wavelength bands.   Due to the
pronounced relief in SNP and the shadows cast by low sun angles during spring satellite
acquisitions, it was critical to adjust the imagery to remove topographically induced differences in
vegetation reflectance.  Topographic normalization was performed using the backward radiance
correction transformation proposed by Colby (1991).  This method adjusts for differential
reflectance patterns due to slope orientation to incident sunlight.  Finally, images were
radiometrically normalized to a master scene to adjust for sensor calibration differences between
image dates using a procedure based on Coppin and Bauer (1994).  Resulting normalized images
minimized spurious differences between vegetation reflectance (Figure 1).

We computed an index of vegetation vigor for the pre- and post-infestation images using the
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Normalized Difference Vegetation Index or NDVI (Jensen 1996).  This index is calculated as a ratio
of near-infrared to red reflectance for each pixel in the image.  Since healthy vegetation reflects
strongly in the near-infrared portion of the spectrum, and absorbs the red portion, a ratio of near-
infrared to red reflectance highlights vegetation in multispectral imagery.  The formula for calculation
of the NDVI is: NDVI = (NIR – Red) / (NIR + Red) where NIR is near-infrared reflectance from
Landsat TM wavelength band 4 and Red is red reflectance from Landsat TM wavelength band 3.
Values of the NDVI range from –1 to 1, and higher (positive) values represent healthier, more
vigorous vegetation.  The NDVI has been widely applied in remote sensing studies of vegetation
condition (Jensen 1996).  We applied the mask of pre-infestation hemlock stands to NDVI
transformations of the normalized 1984 and 1997 imagery to examine the change in NDVI in
hemlock stands.

Field Data Collection.  We collected information in the field to compare measures of hemlock
decline from NDVI with measures of tree health from vegetation plots.  The purpose of field plots
was to to record coniferous tree species dominance, stand characteristics, and hemlock health for
evaluating potential imagery-derived vegetation indices.  We used landscape data from GIS to
randomly locate sample plots in known hemlock areas, stratified by topography and image
reflectance types. We visited 58 sites in the fall of 1998 and the summer of 1999.  Site coordinates
were located in the field using a handheld GPS receiver capable of receiving the U.S. Military
precise positioning service (PPS) with a potential real-time locational accuracy of ± 4 meters.

Each full plot was centered on a point and was 30 meters in diameter.  At each plot we measured
basal area, diameter, species, density, canopy position, and crown closure of trees; presence of
understory conifers; and health (if hemlock) of significant (e.g., greater than 8 cm dbh) coniferous

Figure 1.  Examples results of 1984 satellite image atmospheric correction and topographic
normalization in Shenandoah National Park, before (left) and after (right).  Notice reduction in
shadows and haze.
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trees. At a subset of plots we recorded only conifer diameter, basal area, species, canopy position,
and health of hemlocks in a 15-meter diameter plot. Hemlock health was observed visually for each
tree and recorded on a six-number scale developed by SNP personnel for their annual hemlock
health surveys (Table 1).  We re-scaled the SNP crown health measurement using the mid-point of
the class (i.e., percentage foliage), and calculated the mean health value by plot.

Landscape Variables.  We summarized landscape information using GIS.  The goal of this analysis
was to examine environmental gradients that may influence the rate of hemlock decline directly by
affecting HWA populations or HWA dispersal, or indirectly by influencing hemlock habitat suitability
and stress.  GIS data layers used in this analysis were a digital elevation model (DEM) of the park,
maps of streams, roads, and trails.   The DEM was derived from standard USGS 1:24,000 scale
digital elevation files where each cell represents  0.09 ha of ground area (30 m by 30 m). We used
the DEM to produce maps of elevation, slope, slope direction (e.g., aspect), slope shape, moisture
index, and relative solar illumination.  Slope direction was translated to a measure of “northness” by
a cosine transform such that aspect varied from -1 (south) to 1 (north) (Roberts 1986). A measure
of slope shape was calculated from the DEM following methods outlined in McNab (1991). A
measure of solar illumination was calculated from a hill-shading function using the sun’s position and
height above the horizon at the summer solstice (Marsh 1983) to highlight those areas likely to be in
shadow.   A relative topographic moisture index was calculated from the DEM following Anderson
and Merrill (1998).

We used GIS distance functions to create maps of distance to roads, trails, and streams.  In this
process, lines representing roads, trails, and streams were converted to a binary representation
where presence or absence of the linear feature is recorded on each cell of the map as 1 or 0
respectively.  The result of the distance calculation is a continuous surface recording the relative
distance of each pixel in the park from linear features.

Statistical Analyses.  Landscape and NDVI variables were summarized for pixel areas within the
hemlock mask image, and translated into a table for statistical analysis.  Field data was tabulated by
sample point and overlaid on 1984 and 1997 satellite images to record NDVI values around each

Table 1.  Hemlock Health Classification Developed by SNP Biologists and Used in
Assessments of Hemlock Tree Health.

Crown Health Definition         Re-Scaled
Indicator         (Midpoint)

1 85 to 100% crown intact 92.5
2 50 to 85% crown intact 67.5
3 15 to 50% crown intact 32.5
3X 0 to 15% crown intact 7.5
4 Dead from HWA 0
5 Dead from other/unknown 0
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sample location.  The goal of this analysis was to examine change in NDVI from 1984 to 1997, to
assess correspondence between field collected attributes of hemlock health and NDVI, and to
assess potential relationships between hemlock decline and landscape features. Our aim was to use
exploratory data analysis to identify potential avenues for further research as we collected additional
data on the rate and nature of hemlock defoliation from remote sensing investigations. We assessed
the relationship between NDVI and field measures of hemlock crown damage using scatter plots
with fitted regression lines and simple correlation analysis. We used regression tree-based models to
assess relationships between NDVI change in hemlock areas and landscape attributes.  Regression
tree models are non-parametric exploratory modeling techniques that do not assume any distribution
in the predictor variables, which can be either categorical or continuous variables (Breiman et al.
1984). These models are fitted to the dependent variable (in this case NDVI or NDVI change) by
recursively splitting the dataset based on the independent variables (e.g., the landscape variables).
The result is a tree or mobile graph showing the partitioning of the data set (on the dependent
variable), and the “proportional reduction in error” value (similar to a multiple squared R value).
When the dependent variable is categorical, these models are termed “classification trees”; when the
dependent variable is continuous, the models are termed regression trees.  CART models are useful
as exploratory tools because they can uncover “non-additive behavior” or interactions among
variables easier than can linear models such as multiple regression (Clark and Pregibon 1993).

Results

Results from NDVI calculated from the satellite images show a generalized decrease in vegetation
vigor from 1984 to 1997 in areas classified as hemlock (Table 2).  A total of 22,211 0.09 ha pixels
(1998.99 ha) were classified as hemlock from the 1984, pre-infestation image. Of this total,
vegetation vigor as measured by the NDVI decreased in 97.6% (1951.38 ha) of the areas originally
classified as hemlock.  In 42.2% (844.2 ha) of the area classified as hemlock, the NDVI
measurement decreased by greater than 50% (Table 3).  A comparison of image-measured NDVI
decline to hemlock defoliation measured at field plots showed a fairly good correspondence (Figure
2).  The average health of hemlocks across all canopy classes in hemlock-dominated field sites was
correlated to NDVI difference from 1984 to 1997, regardless of the presence of understory
conifers.

The plot shows a modest linear relationship (R2 of .334), but reveals some potential problems in
comparing these measurements.  For example, heavy defoliation of hemlocks was measured at
some field plots, but was not reflected in the change in NDVI.  Field plots that did not have
understory conifers show a better fit to image-based NDVI  (R2 of .4614), most likely due to
elimination of areas with mixed pixels.  However, there are still some areas showing high defoliation
in the field that are not reflected by image-based NDVI change.

Results of regression tree analysis (Figure 3) in areas classified as hemlock demonstrate partitioning
of the dependent variable (in this case post-infestation NDVI in 1997) based on landscape
variables. The 22,211 - 0.09 ha pixels are split into groups based on the most important predictor
variable. Reading down the tree graph allows an examination of the main factors influencing the
dependent variable.  In this case elevation was most important for predicting levels of 1997 NDVI.
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Hemlock areas at elevations lower than 749 meters had much lower average NDVI than those at
higher elevations.  Beyond the first split, areas that are closer to streams had lower average NDVI
(second level on left), and areas at the highest elevations had the highest NDVI.

Overall, the model fit is low (proportional reduction in error or PRE of 26%) suggesting that
variability in NDVI in 1997 imagery was only weakly associated with landscape factors.   By this
time, there had been almost 10 years of HWA defoliation in the park and decline due to HWA may
have progressed in most stands to a somewhat uniform level.   The remaining variability in NDVI
(not explained by this model) may be due to other factors such as boosting of the NDVI signal from
other regenerating conifers, or from depression of infrared reflectance due to exposure of water
under defoliated canopies.  It will be instructive to assess NDVI change at intermediate time periods
to fully understand the progression of decline based on landscape position and vegetation
characteristics.

A regression tree model of NDVI change from 1984 to 1997 (Figure 4) shows a more complex
model with more interactions, but a poorer overall fit (12.8%).  The most important factors in this
model are distance to streams and elevation.  Those areas that were closer to streams and at low
elevations had the most change in NDVI, while those hemlock stands on steep slopes and at high
elevations had the lowest levels of NDVI change.   Again, more work needs to be done to
investigate the reasons for poor model fit.  Data analysis of each of the 22,211 individual pixels may
be introducing noise into the data analysis, especially if there is a slight misregistration in the
geospatial data.  It may be more telling to examine contiguous pixels or stands as one unit for
analysis.

Table 2.  Results of NDVI in 22,211 - 0.09 Ha Pixels (1998.99 Total Ha) From Image
Areas Classified as Hemlock on 1984 and 1997 Normalized Satellite Images (i.e., Hem-
lock Mask)

1984 Image 1997 Image
Mask Mask

Minimum NDVI 0.341152 0.275638
Maximum NDVI 0.627978 0.515480
Mean NDVI 0.513097 0.392805
Std. Deviation of NDVI 0.060181 0.061806

Table 3.  Change in NDVI From 1984 to 1997 in Each of 22,211 - 0.09 Ha Pixels

NDVI Change Type # of 0.09 Ha Pixels Total Area (ha) % of Total Area

Decrease > 50% 9380 844.2 42.2
Decrease < 50% 12302 1107.18 55.4
Increase < 50% 328 29.52 1.5
Increase > 50% 201 18.09 <1
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Hemlock defoliation vs topo NDVI 84-97 change - only hemlock 
dominated sites w/o understory conifers

R2 = 0.4614

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100

% Hemlock defoliation in 1998-1999

T
o

p
o

 N
D

V
I d

if
fe

re
n

ce
 8

4-
97

Figure 2b.

Figures 2a and 2b.  Results from comparison of 1984 to 1997 satellite
imagery derived NDVI decline and field-measured defoliation of eastern
hemlock.  Field plots dominated by hemlock, but regardless of under-
story conifers (2a), and field plots dominated by hemlock but without
understory conifers (2b).

Hemlock defoliation vs NDVI 84-97 change - only hemlock dominated 
sites regardless of  understory conifers
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Figure 2a.
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NDVI97
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Figure 3.  Regression Tree model of 1997 NDVI (NDVI 97) compared to landscape
attributes.  Tree splits on elevation (ELEV), then distance to trails (DTR).  Mean NDVI
values are higher at higher elevations and further from streams.  Proportional reduction
of error for this model is 26.3% (0.263).
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Figure 4.  Regression Tree model of 1984 to 1997 NDVI change (NDVI97) compared
to landscape attributes.  Tree splits on distance to streams (DSTR), slope (SLOPE),
elevation (ELEV), distance to trails (DTR), and slope shape (SLPSHAPE).  NDVI
change is higher for areas close to streams and at low elevations.  NDVI change also is
greater in areas of low slope and low elevation that are closer to trails.  Proportional
reduction of error for this model is 12.8% (0.128).
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Discussion

In summary, our most important finding of this research so far is that remote sensing and landscape
modeling can be used to track hemlock decline over large areas, even in areas of high relief, if
attention is paid to proper image correction and calibration for atmospheric, radiometric, and
topographic influences.  Image-based measures of vegetation vigor correspond fairly well with field-
based measures, but vegetation response from understory conifers may confuse the signal returned
to the satellite, especially in the fairly coarse 0.09 ha pixels of Landsat imagery.

This study and other preliminary work point to the fact that hemlock decline as measured by change
in NDVI shows association with landscape variability in Shenandoah National Park. However, the
signal evidenced by looking at only pre- and post-infestation imagery is weak.  More work is
needed to assess whether this weak signal is related to the level of decline evident by 1997, or if
factors operating at other scales such as soil nutrients, drought, or air pollution are more important
for influencing rates of hemlock decline due to HWA.

Regression tree models appear to provide an excellent avenue for analysis of the relationship
between hemlock decline and landscape structure.  Regression tree models uncovered interactions
between landscape variables that would not have been apparent using linear regression modeling.
This technique also will be valuable for creating predictive models of areas on the landscape likely to
be most heavily impacted, thus management activities can be better directed without reliance on
extensive field surveys.  One output of CART models is a set of “decision rules” that can be directly
translated into map form using GIS to classify areas according to their potential for hemlock decline.

There appears to be an interaction between landscape structure and hemlock decline in Shenandoah
National Park.  However, much work remains to uncover the mechanisms responsible for this
interaction. We are optimistic that relationships between hemlock decline and landscape structure
will be made clearer through the use of more time sequence maps of the rate and location of
hemlock decline.  Hopefully, this will allow us to provide better estimates of vulnerable landscape
types in other national park units that are threatened from the hemlock wooly adelgid. This
information should be invaluable for assessing potential biological impacts to bird, amphibian, and
mammal communities that depend on eastern hemlock for some portion of their life cycle.
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